Imaging


Bookmark and Share

Contact: Diana Kenney, Marine Biological Laboratory
508-289-7139; dkenney@mbl.edu

WOODS HOLE, Mass.—How a brilliant-green sea slug manages to live for months at a time “feeding” on sunlight, like a plant, is clarified in a recent study published in The Biological Bulletin.

The authors present the first direct evidence that the emerald green sea slug’s chromosomes have some genes that come from the algae it eats.

These genes help sustain photosynthetic processes inside the slug that provide it with all the food it needs.

Importantly, this is one of the only known examples of functional gene transfer from one multicellular species to another, which is the goal of gene therapy to correct genetically based diseases in humans.

“Is a sea slug a good [biological model] for a human therapy? Probably not. But figuring out the mechanism of this naturally occurring gene transfer could be extremely instructive for future medical applications,” says study co-author Sidney K. Pierce, an emeritus professor at University of South Florida and at University of Maryland, College Park.

The rich green color of the photosynthesizing sea slug, Elysia chlorotica, helps to camouflage it on the ocean floor. Credit: Patrick Krug

The rich green color of the photosynthesizing sea slug, Elysia chlorotica, helps to camouflage it on the ocean floor. Credit: Patrick Krug

The team used an advanced imaging technique to confirm that a gene from the alga V. litorea is present on the E. chlorotica slug’s chromosome. This gene makes an enzyme that is critical to the function of photosynthetic “machines” called chloroplasts, which are typically found in plants and algae.

It has been known since the 1970s that E. chloritica “steals” chloroplasts from V. litorea (called “kleptoplasty”) and embeds them into its own digestive cells. Once inside the slug cells, the chloroplasts continue to photosynthesize for up to nine months—much longer than they would perform in the alga. The photosynthesis process produces carbohydrates and lipids, which nourish the slug.

How the slug manages to maintain these photosynthesizing organelles for so long has been the topic of intensive study and a good deal of controversy. “This paper confirms that one of several algal genes needed to repair damage to chloroplasts, and keep them functioning, is present on the slug chromosome,” Pierce says. “The gene is incorporated into the slug chromosome and transmitted to the next generation of slugs.” While the next generation must take up chloroplasts anew from algae, the genes to maintain the chloroplasts are already present in the slug genome, Pierce says.

“There is no way on earth that genes from an alga should work inside an animal cell,” Pierce says. “And yet here, they do. They allow the animal to rely on sunshine for its nutrition. So if something happens to their food source, they have a way of not starving to death until they find more algae to eat.”

This biological adaptation is also a mechanism of rapid evolution, Pierce says. “When a successful transfer of genes between species occurs, evolution can basically happen from one generation to the next,” he notes, rather than over an evolutionary time scale of thousands of years.

Citation:

Schwartz JA, Curtis NE, and Pierce SK (2014) FISH labeling reveals a horizontally transferred algal (Vaucheria litorea) nuclear gene on a sea slug (Elysia chlorotica) chromosome. Biol. Bull. 227: 300-312.

—###—

The Biological Bulletin is a peer-reviewed, trans-disciplinary international journal that publishes outstanding experimental research on a wide range of organisms and biological topics, with a focus on marine models. Published since 1897 by the Marine Biological Laboratory, it is one of America’s oldest and most respected journals.


The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

MBL Adjunct Scientist Amy Gladfelter can now add “video producer” to her resume. Tapped to make her science “visible to the world” by Celldance Studios, a project of the American Society for Cell Biology (ASCB), Gladfelter came up with an aesthetically beautiful, simply told video about her discoveries of what goes wrong when cells form toxic aggregates, such as in Alzheimer’s disease. Her mini-movie, called “Companions in Discovery,” was filmed partly at MBL and partly at Dartmouth College, where she is an Associate Professor of Biological Sciences. It premiered for an appreciative audience in December at the ASCB annual meeting in Philadelphia.

“I like the end of the film, where members of [Gladfelter’s] lab talk briefly on camera. These young faces are the future of cell biology,” said Simon Atkinson, chairman of the ASCB’s Public Information Committee, which sponsors Celldance Studios.

Celldance Studios gave Gladfelter $1,000 to underwrite her costs, and provided video editing and post-production support. The original score is by Hollywood film composer Ted Masur, son of cell biologist Sandra Masur. More information is here.

 

Bookmark and Share

 

By Wallace Marshall
Co-director, MBL Physiology Course

Last month, I had a problem. I was teaching in the MBL Physiology course, using the giant, single-celled organism Stentor as a model system for students to learn quantitative approaches in cell biology. Stentor, which live in ponds, eat by creating a vortex of water that drags food into the cell’s mouth. The flow is created by thousands of cilia—tiny, hair-like cell parts that swing back and forth pushing fluid around. (Cilia are also critical for making the mucus in your airway flow away from your lungs, and patients with defects in these cilia can be really sick. So the question of how cilia make fluid flow is very important from a medical perspective. )

Stentor is a genus of large, trumpet-shaped ciliates, commonly found in freshwater ponds. Credit: EOL / micro*scope

Stentor is a genus of large, trumpet-shaped ciliates, commonly found in freshwater ponds. Credit: EOL / micro*scope

One of the students in our class, Shashank Shekhar from the CNRS Institute, France, had become interested in how the cell generates this pattern of fluid flow. Shashank started tracking the flow by putting small plastic beads into the water around the Stentor and then taking video images of the beads moving. This is a pretty standard approach in fluid dynamics called particle image velocimetry (PIV). But it’s not that commonly used in biology, and we didn’t entirely know what we were doing. The software we had been trying to use to track these particles didn’t give really nice flow lines. So this was the problem: How to use the flow of these tiny beads to figure out the pattern of flow around the cell as it feeds.

Frustrated by this problem, I decided to go get some coffee from Woods Hole Market. On the way back, I ran into my colleague Magdalena Bezanilla, an MBL Whitman Investigator from University of Massachusetts, Amherst, who works on cell biology. She thinks a lot about things moving inside cells so I figured I could get her input into our PIV challenge.

We ended up chatting about the problem in the MBL’s Waterfront Park, and while we were talking, a couple of guys emerged from the harbor in full scuba gear, carrying a huge metal bracket upon which was mounted a video camera and a laser. (This would be quite weird back home but it’s business as usual in Woods Hole.) I asked the guys what they were up to and they said they were using PIV to study the flow of fluid around ctenophores! Ctenophores or comb jellies are jellyfish-like animals that swim using cilia. So at the exact moment that we were pondering how to use PIV to track cilia-generated fluid flow in our single-celled organisms in the Physiology course, a guy walks out of the water and announces that he is doing the exact same thing, for comb jellies! (Those people who say that Woods Hole is a magical place are telling the truth.)

The guys with the scuba gear and lasers were Jack Costello of Providence College and Sean Colin of Roger Williams University, Whitman Investigators working for the summer at the MBL. Jack offered to give us advice about how to analyze our data, so I sent Shashank over to Jack’s lab in the Rowe building. With Jack’s help and expertise, Shashank was able to get beautiful flow lines from his data (see photo), which clearly reveal the pattern of cilia-generated flow around the Stentor cell while it feeds. Our big problem was solved in a single day due to a fortuitous combination of people, courses, coffee breaks, cells, beaches, marine organisms, and advanced technology. And that’s what summer at the MBL is all about.

Fluid flow around Stentor visualized through particle image velocimetry. Courtesy of Wallace Marshall.

Fluid flow around Stentor as it feeds, visualized by particle image velocimetry. Courtesy of Wallace Marshall.

Thank you to Wallace Marshall of the University of California, San Francisco, for contributing this post. All MBL scientists, students, community members, and visitors are invited to submit items for the MBL’s blog. Please contact Diana Kenney: dkenney@mbl.edu.

Adam Cohen instructing in the MBL Physiology course in 2014.
Credit: Tom Kleindinst

Adam Cohen, a faculty member and former student in the MBL’s Physiology course, is one of three winners of the inaugural Blavatnik Awards for Young Scientists. The awards, given by the Blavatnik Family Foundation and the New York Academy of Sciences, honor exceptional young U.S. scientists and engineers. Each laureate receives $250,000 – the largest unrestricted cash prize for early-career scientists. Cohen is Professor of Chemistry and Chemical Biology and Physics at Harvard University, and a Howard Hughes Medical Institute (HHMI) investigator.

Cohen was recognized for “significant breakthroughs in cellular imaging that allow for the observation of neural activity in real-time, at single-cell resolution.” Combining his expertise in chemistry, physics, and biology, Cohen uses microscopy and lasers to develop noninvasive methods of visualizing and studying the roles of cellular voltage in neurons. His novel techniques, including fluorescent voltage indicators derived from microbial rhodopsins, help to answer questions about the propagation of electrical signals and could one day lead to the design of individualized treatments for conditions such as ALS, epilepsy, and bipolar disorders.

“Cohen is recognized as one of the nation’s most promising young scientists,” said Vern Schramm, Ruth Merns Chair in Biochemistry at the Albert Einstein College of Medicine and a member of the 2014 Blavatnik Awards National Jury.

The two other 2014 Blavatnik National Laureates are Rachel Wilson, Professor of Neurobiology at Harvard University and an HHMI Investigator, who was recognized for her research on sensory processing and neural circuitry in the fruit fly; and Marin Soljačić, Professor of Physics at MIT, recognized for his discoveries of novel phenomena related to the interaction of light and matter, and his work on wireless power transfer technology.

The Blavatnik Family Foundation is headed by philanthropist Len Blavatnik, founder and chairman of Access Industries, a privately held U.S. industrial group.

By Laurel Hamers

One of the brain’s amazing abilities is self-repair: Although injury or illness may disrupt neural circuits, many connections will reform over time.

Artur Llobet, an MBL Research Awardee from the University of Barcelona, is spending his second consecutive summer in the Whitman Center for Visiting Research investigating olfactory neuron repair in Xenopus laevis, the African clawed frog.

Calcium labeling of olfactory sensory neurons' presynaptic terminals in a Xenopus laevis tadpole. Photo credit: Artur Llobet

Labelling of presynaptic terminals of olfactory sensory neurons in a Xenopus laevis tadpole using calcium green dextran. Image is pseudocolored so that yellow represents higher and blue lower calcium concentration.
Photo and caption: Artur Llobet

“One of the advantages of working with frogs is that they have fantastic regenerative capabilities,” says Llobet. Tadpoles are able to repair damaged neural circuits in a few days, making them ideal test subjects.

Llobet is working with a transgenic line of Xenopus tadpoles that express green fluorescent protein (GFP) in their neurons, allowing him to easily see the neural connections. Last year, he studied the timeframe of Xenopus neural repair by measuring how long snipped olfactory nerves took to regrow. Now, he is trying to understand in greater detail the mechanisms behind the repair process.

Neurons pass electrochemical messages between each other at junctions called synapses; when a neuron fires, the voltage change propagates along the nerve fiber (axon) and calcium increases at the presynaptic terminal, which releases neurotransmitters. By labeling the tadpoles’ synaptic terminals with calcium indicators, Llobet can visualize the functionality of the re-grown connections and determine when during the repair process the new synapses start signaling.

“In a GFP animal, we can see that the nerve has re-grown, but we don’t know if that nerve is actually working or not,” says Llobet. “So we look at the synapses and see whether the calcium concentration increases when we stimulate olfactory sensory neurons.” This calcium accumulation indicates that the new nerve is not just present, but also functional.

By examining neural repair in frogs, scientists hope to gain insight into this process in more complex systems such as the human brain.

Llobet’s research is taking place through the National Xenopus Resource (NXR) at the MBL, a center that maintains breeding stocks of frogs and provides training on advanced imaging and experimental technologies. According to Llobet, the specialized resources offered by the NXR make this research project possible. He is one of six MBL Research Awardees in 2014 to be using the animals and research services of the NXR, which is one of 28 National Institutes of Health-funded Animal Resource Centers nationwide and a cornerstone facility of the MBL’s Bell Center for Regenerative Biology and Tissue Engineering.

Next Page »