If you check the MBL’s Twitter feed during the summer months, you’ll be treated to quick, highly enthusiastic, and often visually beautiful dispatches from the MBL’s Summer Courses. The students and faculty are pursuing up-to-the-minute questions in life sciences research using a wide array of high-end imaging equipment, and some of the images they produce are eye-popping. Here are just a few recent Twitter posts from MBL students and faculty:

Vincent Boudreau (@viboud), a graduate student in the Physiology Course from University of North Carolina, Chapel Hill, Tweeted out this video, which he and several students made during the course’s biochemistry bootcamp under the supervision of Sabine Petry of Princeton University and Robert Fischer of the National Institutes of Health. “This bootcamp experiment taught us students how to do the biochemical legwork involved to get these microtubules to give us such stunning images,” Boudreau says. Microtubules (red) can be seen branching off of one another, marked by the green EB1 protein at their outwardly growing extremity. Video made with a Nikon TIRF microscope.

The MBL Embryology Course, tweeting under the hashtag #embryo2015, has shared one striking image after another. This is a tardigrade (a bizarre-looking, microscopic, water-dwelling animal) imaged with light-sheet microscopy by two students in the course: Christina Zakas, a post-doc at New York University who tweets @CZakDerv, and Nick Shikuma, a post-doc at Caltech.


Tardigrade stained with DAPI to highlight nuclei and imaged on the Zeiss lighsheet Z1. Credit: C. Zakas and N. Shikuma, MBL Embryology course

Speaking of Embryology, several students in the course are blogging about their MBL experiences at the Node, an online community resource run by The Company of Biologists.  Check out their impressions of the course — its sheer intensity, its “exquisite coordination,” and the fun that balances all the hard work.

Embryology Course Co-director Alejandro Sánchez Alvarado, an expert Tweeter, once in a while reminds the students to step back from the bench, take a deep breath, and enjoy the beauty of Woods Hole. He called this scene “the rewards of Eel Pond after a rich day of learning and experimentation.”

Eel Pond, Woods Hole. Credit: Alejandro Sánchez Alvarado of the Stowers Institute/HHMI

Eel Pond, Woods Hole. Credit: Alejandro Sánchez Alvarado of the Stowers Institute/HHMI


Every July, the community of Woods Hole happily anticipates one unique event. There is nothing else quite like it on Cape Cod, or probably in the whole country. The annual Fourth of July parade organized by the MBL Club is a festive celebration of all things Woods Hole, from the MBL itself to sea life, science, and all things random. It is a quirky parade that proudly takes over Water street beginning at 12 noon every July 4th. It draws a large audience in this tiny town, from locals to summertime regulars to unsuspecting tourists just looking for a cup of coffee. Leading the parade was this year’s grand marshal, Jack Gilbert, an associate professor from the University of Chicago. As a band played enthusiastically behind him, Gilbert lead the miscellaneous yet passionate crew down the road.

Several memorable participants from the MBL included Grass Foundation fellows and faculty, wearing their grass skirts and hats while carrying signs with phrases such as “Lower Animal Rights Now.” The crew from the Marine Resources Department were preceded by manager Dave Remsen, riding his handmade horseshoe crab creation that he assembled by attaching cardboard to his bicycle. Another clever use of cardboard came in the form of a model of the Gemma, an MBL collecting boat, that was carried by members of the Biology of Parasitism summer course. Other 2015 MBL Advanced Research courses were represented, including the Embryology course and the Neural Systems and Behavior course, which entailed costumes and props to act out various scientific functions and processes. The Biology of Parasitism course also dressed as a few of their research organisms, while the Summer Program in Neuroscience, Ethics, and Survival (SPINES) course dressed as pirates. Spectators could clearly see how much fun those walking in the parade had, though it was not always clear to the onlookers what some participants represented.

More notable characters included “Lobster Claus” (envision a Santa Claus-lobster hybrid), the Woods Hole folk dancers showcasing their moves, several dogs sporting patriotic bandanas, and some homemade jelly fish assembled by young girls holding decorated umbrellas. A rainbow banner announced the marriage equality group who were celebrating the recent groundbreaking Supreme Court decision by holding hands and singing the Dixie Cups’ hit song “Chapel of Love” joyfully.

Spectators and participants alike enjoyed some refreshing watermelon outside the MBL club to wrap up the festivities. The MBL Club’s annual Fourth of July Parade is a truly one-of-a-kind event that showcases what a special place Woods Hole is, year after year.

By Kelsey Calhoun

Chronic pain gets a fair amount of attention from researchers, but chronic itch, such as eczema or psoriasis, can cause just as much distress. Chronic itch can result from a variety of skin, nervous system or systemic disorders, and many drugs, including some antidepressants, can cause terrible itch as a side effect. There are few effective treatments for such intense and chronic itching, despite being a relatively common affliction: Eczema alone affects nearly 10 percent of people worldwide.

But good news may be on the horizon. A team of scientists, including faculty and students in the MBL Neurobiology Course, have identified a new gene that promotes itching, suggesting a way forward to a better understanding and, perhaps, to powerful new therapies.

Dr. Diana Bautista

MBL Neurobiology Course faculty member Diana Bautista of University of California, Berkeley. Credit: MarkJosephStudio.com

To identify genes that mediate itch, the team, led by Diana Bautista of the University of California, Berkeley, and Rachel Brem at the Buck Institute for Research on Aging, studied itch behavior across genetically distinct mouse strains.  Just as eczema and allergic itch can run in families, they found that some mouse strains were more likely to develop chronic itch and could pass this trait onto their progeny. They then compared gene expression levels in the itch-prone and itch-resistant mice, specifically in the sensory neurons that innervate the skin and mediate itch sensations.

They discovered that mice naturally expressing high levels of a particular gene, HTR7, were exceptionally itchy. This caught their attention, because HTR7 codes for a serotonin receptor, and “high levels of serotonin in the skin have long been known to correlate with itch severity in a variety of human chronic itch disorders,” Bautista says. They also discovered, in a mouse model of eczema, that activation of HTR7 triggered itch-evoked scratching while ablation of HTR7 significantly diminished itch.   

Some of the key work on the paper was done by three students in the MBL Neurobiology Course in 2014. Anne Olsen, Michael Kienzler, and Kyle Lyman worked with Bautista, a faculty member in the course, to identify some of the mechanisms by which activation of HTR7 promotes chronic itch signaling in the nervous system.  All three students appear as co-authors on the paper.

Understanding the molecular mechanisms underlying chronic itch is of significant clinical interest and there is much more to learn. “Abnormal behavior of three cell types mediate chronic itch,” says Bautista, “skin cells, neurons, and immune system cells. We want to discover the mechanisms that promote itch, and also what long-term changes in these cell types maintain chronic conditions.” In the meantime, the HTR7 receptor offers an exciting potential drug target for new medications seeking to sooth intense itchiness.

Citation: Morita T et al (2015). HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron, DOI: 10.1016/j.neuron.2015.05.044

Summer at MBL is busy, beautiful, and quickly over, but time is still devoted to planning for the future. Students and early-career scientists looking for their next steps don’t have to go far for advice, because each Wednesday during lunch,the SUCCESS program tackles an important aspect of career planning.

From crafting a resumé to getting funded to choosing a mentor, different career topics are addressed each week by a panel of successful scientists.. The atmosphere is informal, so attendees are comfortable asking questions and sparking discussion.

A quick survey of attendees at last week’s SUCCESS workshop proved roughly half were undergraduates, a quarter were graduate students, and a quarter were post-docs, with a few research technicians and assistants as well. The panel discussion on “Choosing Your Career: Academia and Other Not-for-Profitsoffered something for everyone to consider, regardless of career stage.

Panelist Steve Zottoli, MBL’s Co-Director of Education, stressed the importance of mentors. “Finding the right mentor is so critical. You have to take an active role in finding the right mentor who believes in you so much that they take you to the next level,” he said. As students and early-career scientists find their mentors and their places in the scientific community, the SUCCESS series makes sure they are not without good advice.

SUCCESS workshops are held on Wednesdays through July 29 in the Meigs Room, Swope Center, with lunch beginning at 11:30 AM. The full schedule is here: http:/www.mbl.edu/SUCCESS/

The SUCCESS series (Shaping and Understanding Career Choices in Education, Science, and Self) is a project of a dedicated, MBL community-wide committee led by Bill Reznikoff, MBL Director of Education.

The MBL’s collecting boat, the Gemma, has had a few passengers from Woods Hole Oceanographic Institution of late: Aran Mooney, a biologist, and Casey Zakroff, an MIT-WHOI Joint Program graduate student. Mooney and Zakaroff are studying the impact of ocean acidification on squid, using data they collected with the help of the Gemma’s captain and crew. (Ocean acidification is the ongoing decrease in the pH of the Earth’s oceans, caused by the uptake of carbon dioxide (CO2) from the atmosphere.)

Along with being a key species in the oceanic food web, squid have a multimillion-dollar impact on the human food industry. They are a vital component to the marine ecosystem’s wellbeing, as well as ours, making it crucial to monitor any risks that threaten healthy growth.

In the film, Is Ocean Acidification Affecting Squid?, produced by Daniel Cojanu, Mooney and Zakroff show how rising pH levels may be impacting a local and much prized marine species.


« Previous PageNext Page »