MBL


Ever wonder what it takes to keep MBL scientists working away? Here’s a clue, in the form of a time-lapse video of the daily upkeep required for the many zebrafish being studied at the MBL this summer. University of Chicago undergraduates Melissa Li and Clara Kao pressed “go” on a video camera and then went about their daily routine of feeding, cleaning, and generally caring for all the fish in the Zebrafish Facility. “We basically make sure everyone is happy and healthy,” Kao says. The 24-second video went up on a blog they’re keeping on their summer of research at the MBL: Summer People, Some Are Not (tagline: Some Are Zebrafish).

http://summerpeoplesomearenot.tumblr.com/post/123742373728/the-daily-grind

These two rising juniors are working in Jonathan Gitlin’s lab this summer, a change from the labs they work in back in Chicago. “When you switch labs for the summer, you get a different sort of snippet of the scientific world,” Li says. Both are interested in coming back to the MBL after the summer is over- Kao is in fact here for her second summer, and is interested in coming back for the Physiology course. With any luck, the blog and video collection will get a chance to expand.

The family, friends, and colleagues of Catherine N. Norton (1941-2014), former director of the MBLWHOI Library, gathered in Lillie Auditorium on June 19 to honor her memory. As befitting Norton, who was ever-positive and energetic, the event was inspiring, enlightening, and celebratory of her life, family, and pioneering professional accomplishments.

Family, friends and colleagues of Cathy Norton gathered in Lillie Auditorium to celebrate her life. Credit: Tom Kleindinst

Cathy Norton’s family, friends, and colleagues gathered in Lillie Auditorium to share stories of her life and great contributions to library science. Credit: Tom Kleindinst

Speakers at the celebration honored Norton’s vision and vibrancy, and her major legacy to the library sciences worldwide through her prescient leadership in establishing digital collections, databases, and informatics tools at the MBLWHOI Library. Excerpts from the speakers’ remarks are below.

Diane Rielinger, co-director of the MBLWHOI Library, announced the Catherine N. Norton Endowed Fellowship, which has received donations from more than 110 family members, friends, and colleagues. This endowed fund will support projects by students or early-career fellows that use the MBLWHOI Library or Archives and uphold the principles Norton championed by being “openly accessible, collaborative, innovative, connective, and laying the foundation for new scientific knowledge.”

****

Cathy always made sure we thought big. She encouraged us to see only opportunities—there were never problems. She didn’t just embrace technology; she pushed it forward with innovative programs that increased access and discovery, such as the Biodiversity Heritage Library. Cathy made sure our library was the first one out of the gate to digitize our collection with the project’s funding, and we developed procedures and policies that others adopted when they started scanning their collections. We learned an incredible amount so fast. — Diane Rielinger, Co-director, MBLWHOI Library

Cathy was one of the most amazingly effective and fun people I have ever worked with. She was a larger-than-life-sized person. Cathy was held in very high repute in library circles: She put MBL in the world league of libraries. And the most important thing to her was family.
— Donald Lindberg, Director Emeritus, National Library of Medicine

Cathy was far ahead of the curve in the Woods Hole community with respect to electronic journals and databases and “informatics.” The community owes a great debt of gratitude to Cathy for her vision, leadership, and hard work that kept the MBLWHOI Library at the forefront of library science and services, and well poised for the future. I assume that by now Cathy has assumed leadership of the Celestial Library and Archives. If so, they are in for an exciting time in the Celestial Realm! — John Farrington, Dean Emeritus, Woods Hole Oceanographic Institution

Cathy exemplified the “sanguine” temperament: open, caring, creative, bubbly, open to human beings but concerned about subject matter. Years ago, I asked her whether a journal should be published in print or digital formats. She said, “Do it both ways: for the present and for the future.” — Gerald Weissmann, Editor-in-Chief, The FASEB Journal and MBL Trustee Emeritus

My work with Cathy was a wonderful ride. We managed to be in the right place and time when new Internet technology came along and she found the money to wire the MBL. She enabled and supported me in the ability to discover and learn by doing, and she also gave me critical life lessons in how to lead a team. And Cathy always managed to have a lot of fun along the way. — David Remsen, director of MBL Marine Resources, who worked with Norton on MBL information systems (including the development of uBio) from 1991-2006

Cathy was a force of nature. The lessons she taught to all of us graduate students on the digital History of the MBL Project were a result of her indomitable spirit, pushing through every roadblock, and her joie de vivre. We carry these qualities forward in the project.
— Kate MacCord, project manager, MBL History Project

Cathy was exceedingly easy to love. She was an audacious friend. — John Monahan, family friend

I never met Cathy, but this is what I have heard about her: “inspirational but funny,” “very determined but kind,” “incredibly focused but managed to be positive.” These are the attributes we want to continue at MBL. — Hunt Willard, MBL President and Director

Audience members also shared their memories, many humorous, touching, or revealing of Norton’s “can-do” spirit. The memorial concluded with music performed by the Falmouth a capella group Notescape.

 

If you check the MBL’s Twitter feed during the summer months, you’ll be treated to quick, highly enthusiastic, and often visually beautiful dispatches from the MBL’s Summer Courses. The students and faculty are pursuing up-to-the-minute questions in life sciences research using a wide array of high-end imaging equipment, and some of the images they produce are eye-popping. Here are just a few recent Twitter posts from MBL students and faculty:

Vincent Boudreau (@viboud), a graduate student in the Physiology Course from University of North Carolina, Chapel Hill, Tweeted out this video, which he and several students made during the course’s biochemistry bootcamp under the supervision of Sabine Petry of Princeton University and Robert Fischer of the National Institutes of Health. “This bootcamp experiment taught us students how to do the biochemical legwork involved to get these microtubules to give us such stunning images,” Boudreau says. Microtubules (red) can be seen branching off of one another, marked by the green EB1 protein at their outwardly growing extremity. Video made with a Nikon TIRF microscope.

The MBL Embryology Course, tweeting under the hashtag #embryo2015, has shared one striking image after another. This is a tardigrade (a bizarre-looking, microscopic, water-dwelling animal) imaged with light-sheet microscopy by two students in the course: Christina Zakas, a post-doc at New York University who tweets @CZakDerv, and Nick Shikuma, a post-doc at Caltech.

tardigrade-C-Zakas-Embryology-2015

Tardigrade stained with DAPI to highlight nuclei and imaged on the Zeiss lighsheet Z1. Credit: C. Zakas and N. Shikuma, MBL Embryology course

Speaking of Embryology, several students in the course are blogging about their MBL experiences at the Node, an online community resource run by The Company of Biologists.  Check out their impressions of the course — its sheer intensity, its “exquisite coordination,” and the fun that balances all the hard work.

Embryology Course Co-director Alejandro Sánchez Alvarado, an expert Tweeter, once in a while reminds the students to step back from the bench, take a deep breath, and enjoy the beauty of Woods Hole. He called this scene “the rewards of Eel Pond after a rich day of learning and experimentation.”

Eel Pond, Woods Hole. Credit: Alejandro Sánchez Alvarado of the Stowers Institute/HHMI

Eel Pond, Woods Hole. Credit: Alejandro Sánchez Alvarado of the Stowers Institute/HHMI

 

By Rachel Foley

Every July, the Woods Hole community anticipates an event that is unique on Cape Cod, and possibly in the whole country. The annual Fourth of July parade, organized by the MBL Club, is a festive celebration of all things Woods Hole, from the MBL itself to sea life, science, and all things quirky. The parade, which takes over Water Street, draws a large audience to this tiny village, from locals to summer people to unsuspecting tourists just looking for a cup of coffee. Leading the parade was this year’s grand marshal, Jack Gilbert, an associate professor from the University of Chicago. As a band played enthusiastically behind him, Gilbert lead the passionate crew down the road.

Several memorable participants from the MBL included Grass Fellows and faculty, wearing grass hula skirts and hats and carrying humorous signs. The crew from the Marine Resources Department were preceded by manager Dave Remsen, riding his handmade horseshoe crab creation. Another clever use of cardboard came in the form of a model of the Gemma, the MBL’s collecting boat, carried by members of the Biology of Parasitism summer course. Other 2015 MBL courses were represented, including Embryology and Neural Systems and Behavior, bearing costumes and props to act out various scientific processes. The Biology of Parasitism course also dressed as a few of their research organisms, while the Summer Program in Neuroscience, Ethics, and Survival (SPINES) course dressed as pirates. Spectators could clearly see how much fun those walking in the parade had, though it was not always clear to the onlookers what some participants represented.

More notable characters included “Lobster Claus” (envision a Santa Claus-lobster hybrid), the Woods Hole folk dancers showcasing their moves, several dogs sporting patriotic bandannas, and jelly fish represented by girls holding decorated umbrellas.

Spectators and participants enjoyed refreshing watermelon slices outside the MBL Club to wrap up the festivities. The MBL Club’s annual Fourth of July Parade is a one-of-a-kind event that showcases what a special place Woods Hole is, year after year.

By Kelsey Calhoun

Chronic pain gets a fair amount of attention from researchers, but chronic itch, such as eczema or psoriasis, can cause just as much distress. Chronic itch can result from a variety of skin, nervous system or systemic disorders, and many drugs, including some antidepressants, can cause terrible itch as a side effect. There are few effective treatments for such intense and chronic itching, despite being a relatively common affliction: Eczema alone affects nearly 10 percent of people worldwide.

But good news may be on the horizon. A team of scientists, including faculty and students in the MBL Neurobiology Course, have identified a new gene that promotes itching, suggesting a way forward to a better understanding and, perhaps, to powerful new therapies.

Dr. Diana Bautista

MBL Neurobiology Course faculty member Diana Bautista of University of California, Berkeley. Credit: MarkJosephStudio.com

To identify genes that mediate itch, the team, led by Diana Bautista of the University of California, Berkeley, and Rachel Brem at the Buck Institute for Research on Aging, studied itch behavior across genetically distinct mouse strains.  Just as eczema and allergic itch can run in families, they found that some mouse strains were more likely to develop chronic itch and could pass this trait onto their progeny. They then compared gene expression levels in the itch-prone and itch-resistant mice, specifically in the sensory neurons that innervate the skin and mediate itch sensations.

They discovered that mice naturally expressing high levels of a particular gene, HTR7, were exceptionally itchy. This caught their attention, because HTR7 codes for a serotonin receptor, and “high levels of serotonin in the skin have long been known to correlate with itch severity in a variety of human chronic itch disorders,” Bautista says. They also discovered, in a mouse model of eczema, that activation of HTR7 triggered itch-evoked scratching while ablation of HTR7 significantly diminished itch.   

Some of the key work on the paper was done by three students in the MBL Neurobiology Course in 2014. Anne Olsen, Michael Kienzler, and Kyle Lyman worked with Bautista, a faculty member in the course, to identify some of the mechanisms by which activation of HTR7 promotes chronic itch signaling in the nervous system.  All three students appear as co-authors on the paper.

Understanding the molecular mechanisms underlying chronic itch is of significant clinical interest and there is much more to learn. “Abnormal behavior of three cell types mediate chronic itch,” says Bautista, “skin cells, neurons, and immune system cells. We want to discover the mechanisms that promote itch, and also what long-term changes in these cell types maintain chronic conditions.” In the meantime, the HTR7 receptor offers an exciting potential drug target for new medications seeking to sooth intense itchiness.

Citation: Morita T et al (2015). HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron, DOI: 10.1016/j.neuron.2015.05.044

The MBL’s collecting boat, the Gemma, has had a few passengers from Woods Hole Oceanographic Institution of late: Aran Mooney, a biologist, and Casey Zakroff, an MIT-WHOI Joint Program graduate student. Mooney and Zakaroff are studying the impact of ocean acidification on squid, using data they collected with the help of the Gemma’s captain and crew. (Ocean acidification is the ongoing decrease in the pH of the Earth’s oceans, caused by the uptake of carbon dioxide (CO2) from the atmosphere.)

Along with being a key species in the oceanic food web, squid have a multimillion-dollar impact on the human food industry. They are a vital component to the marine ecosystem’s wellbeing, as well as ours, making it crucial to monitor any risks that threaten healthy growth.

In the film, Is Ocean Acidification Affecting Squid?, produced by Daniel Cojanu, Mooney and Zakroff show how rising pH levels may be impacting a local and much prized marine species.

 

By Hunt Willard
MBL President and Director

It’s now been five days since the tragic earthquake struck Nepal. The official death toll has passed 5,000, but this doesn’t begin to tell the story of devastation in Nepal and neighboring regions of China and India that has affected millions of people in the region, wiped out entire villages, and destroyed ancient landmarks of cultural, religious and historic significance.

Kathmandu Valley, April 25. Credit: UNDP Nepal

Kathmandu Valley, April 25. Credit: UNDP Nepal

From the other side of the world, where we finally welcome spring to Woods Hole, it is difficult to grasp the scope of this disaster and the scale of suffering. This is why we tend to focus on specific events or images – the video of avalanches on Mt. Everest, or the neurosurgeon/journalist Sanjay Gupta performing brain surgery on an injured child, or a woman in Kathmandu who was pulled alive from the rubble, 36 hours after her 5-story apartment building came crashing down on top of her. Those images help us stay connected to the story, but ultimately fail to convey the massive scale of suffering, when three stories so quickly blur to become 3,000 and then 3 million.

Science – no less than the world around us – is increasingly a global enterprise. This is especially so at the MBL, where we regularly welcome scientists, staff, students and visitors from around the world.

And this is why we should pause – even for just a moment – to think about our colleagues and friends, some of whom, even unknown to us, have relatives, extended family members, classmates or neighbors who come from Nepal and the regions so affected by this tragedy. Today, we can all be Nepalese, and they can all be part of the MBL community.

Thank you for your thoughts and for what you do.

 

 

Bookmark and Share

By Diana Kenney

The startling discovery of a contagious cancer in steamer clams, published this week in the journal Cell, had its origins at the MBL.

Carol Reinisch began studying a fatal, leukemia-like disease of soft-shell clams (Mya arenaria) at the MBL in the mid-1970s, when it was causing major die-offs among distinct bivalve populations. This week, scientists announced that the disease is a contagious form of cancer that has been transmitted between clam populations from New York to Prince Edward Island, Canada. The study was conducted by Michael Metzger and Stephen P. Goff of Columbia University, Jim Sherry of Environment Canada, and Reinisch.

The soft-shell "steamer" clam, Mya arenaria. Photo by Scott Bennett, MBL

The soft-shell “steamer” clam, Mya arenaria. Photo by Scott Bennett, MBL

Infectious cancer (or “super metastasis”) is known in only two other instances in nature: as a venereal disease in dogs and as a facial tumor in Tasmanian devils, according to an article about the clam leukemia in Science.

Reinisch, a few years ago, thought the clam disease might be caused by a virus, and she brought it to Goff’s attention. Metzger and Goff, she says, “conducted the truly elegant molecular biology to show the cancer is externally derived.”

Through genetic analysis of numerous sick clams, the team showed that while their cancer cells were nearly identical, the cancer cells did not match the genomes of their host clams. This indicates the cancer cells likely descended from a single, original clam cell “gone rogue,” which then multiplied and spread to nearby clams. How the disease was transmitted is still unknown.

Steamer clams are eaten by human beings and are an important commercial fishery. However, researchers say there is no health risk to humans who eat diseased clams. “Nobody eats them raw. When you steam or boil them, it kills all the cells,” Reinisch says.

Reinisch has studied this clam and bivalve disease for decades because “it’s one of the best and unique models of carcinogenesis in nature that we have,” she says. She carried out research at MBL for more than 30 years, first as a Whitman summer investigator and then, from 1998 to 2005, as a year-round scientist. She moved her lab to the MBL in order to explore Mya arenaria as a model system for cancer. Formerly, she was a Department Chair of Comparative Medicine at Tufts Veterinary School.

Reinisch’s earlier work indicated that the spread of the clam leukemia has an environmental component. “For whatever reason, the [cancer] transmission seems to be easier in stressed areas,” she says. “When we used to collect clams in New Bedford, Mass., we knew exactly where to find the ones with leukemia. The clams in a PCB contaminated site were much more liable to have the disease.”

Currently, Reinisch collaborates with Environment Canada in Burlington, Ontario, and is identifying the range of this transmissible cancer. She has studied bivalves as far north as Alaska and the Arctic and hopes to conduct field research in Antarctica in the coming year.

Citation:

Metzger, MJ, Reinisch C, Sherry J, and Goff SP (2015) Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161: 255-263.

 

The Oosight(R) product line of microscopes, developed at the MBL  and commercialized by Cambridge Research & Instrumentation, Inc. (CRi), has been acquired by Hamilton Thorne, Ltd., a provider of precision laser devices and image analysis systems for the fertility, stem cell, and developmental biology research markets.

Widely used in fertility clinics to assess the health of unfertilized eggs (oocytes), the Oosight system provides live, high-contrast images and captures quantitative data on important oocyte structures using a patented, non-invasive, polarized-light technique. The technology was developed at the MBL by Rudolf Oldenbourg, Michael Shribak and colleagues in the 1990s and 2000s and commercialized by CRi as LC-PolScope(TM) technology. The Oosight system’s visualization capabilities have enabled breakthroughs in assisted reproductive technology, stem cell generation, and developmental biology research.

Visualization of the meiotic spindle in a rhesus monkey oocyte (egg) using the OosightTM spindle imaging system during enucleation. The spindle is near the 12 o'clock position in the egg. Credit: From Byrne, et al. 2007. Nature 450: 497-502 (Supplementary Material).

Visualization of the meiotic spindle in a rhesus monkey egg using the Oosight spindle imaging system during enucleation. The spindle is near the 12 o’clock position in the egg. Credit: Byrne et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450: 497-502.

“The Oosight system is a unique instrument that is complementary to our laser products in both fertility and developmental biology research labs,” remarked David Wolf, President and CEO of Hamilton Thorne. “As a long-term distributor of the Oosight system we have already completed the technical integration of the Oosight with our laser products. We believe that by leveraging our established, world-wide sales channels and investing in product marketing, we can generate incremental sales of the Oosight product.”

Additional information on the Oosight product and its multiple applications can be found at www.hamiltonthorne.com/index.php/oosight-overview.

 

Bookmark and Share

The Arctic researchers who gathered at the MBL in late February found the village in a winter deep-freeze, but this hardy group seemed nonplussed by the cold and piles of snow.

They were in Woods Hole for the Arctic Long-Term Ecological Research (LTER) annual meeting, hosted by Gaius Shaver and other scientists from the MBL Ecosystems Center. Shaver directs the Arctic LTER—a consortium of environmental scientists from around the country who base their research out of Toolik Field Station, a remote outpost on the North Slope of Alaska.

“You are in the middle of nowhere,” says Samuel Miller about Toolik, which is operated by University of Alaska-Fairbanks. “Besides researchers, nobody goes up there but hunters and oil workers. It’s about as pristine and undeveloped as you can get in the United States.”

Miller, a Ph.D. student with Albert Colman in the University of Chicago’s Department of the Geophysical Sciences, went to Toolik last summer to collect soil samples from various plant communities and from plots of tundra of different glacial ages.

His research taps into a central concern at the Arctic LTER: How do soil microbial communities interact with the vast stores of carbon that are locked in the permafrost (frozen soil), and what will happen to that carbon as the climate warms?

“In a way, the fate of that reservoir of Arctic carbon is the fate of humanity,” Miller says. “It would be a huge positive feedback [to global warming] if a significant portion of it were released from the soil as methane or CO2,”—gasses that trap heat in the atmosphere.

Miller is using leading-edge methods of extracting proteins from his samples to assess the soil’s biology. “Hopefully, we can get some insight into what controls microbial processing of ancient organic matter stored in Arctic soils,” he says.

Ashley Asmus of the University of Texas at Arlington explains her poster at the 2015 Arctic LTER annual meeting at the MBL. Asmus is studying the impact of a tundra fire on the canopy insect food web. Credit: Diana Kenney

Ashley Asmus of the University of Texas at Arlington explains her poster at the 2015 Arctic LTER annual meeting at the MBL. Asmus is studying the impact of a tundra fire on the canopy insect food web. Credit: Diana Kenney

Along with other scientists, Miller showed his Toolik data at a poster session/reception in Loeb Laboratory. For much of the meeting, the 65 scientists discussed the major insights gained from the last six years of Arctic LTER research, which focused on interactions between climate and ecosystem disturbances, such as tundra wildfires. They also worked to chart a course for the next several years at the LTER, which is funded by the National Science Foundation.

John Hobbie, retired director of the Ecosystems Center, founded Toolik Field Station in 1975 with a small band of pioneers of Arctic long-term ecosystems studies. Recently, Hobbie and George W. Kling edited a volume that synthesizes forty years of Arctic LTER research at Toolik Lake, including valuable contributions to the emergent field of climate change science.

« Previous PageNext Page »